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Abstract We construct the cell-centered Finite Volume discretization of the two-
dimensional inviscid primitive equations in a domain with topography. To compute
the numerical fluxes, the so-called Upwind Scheme (US) and the Central-Upwind
Scheme (CUS) are introduced. For the time discretization, we use the classical fourth
order Runge–Kutta method. We verify, with our numerical simulations, that the US
(or CUS) is a robust first (or second) order scheme, regardless of the shape or size of
the topography and without any mesh refinement near the topography.

Mathematics Subject Classifications (1991) 65M08 · 86A10 · 76B70 · 35L65

1 Introduction

We study the two-dimensional inviscid primitive equations of the atmosphere with
humidity, especially when the domain has a nonflat (mountain like) topography at
the bottom. Using the linear dependency between the height and pressure of the
atmosphere, we consider a version of the 2D inviscid primitive equations, where the
pressure p plays the role of the negative vertical variable,
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432 A. Bousquet et al.

Fig. 1 Domain M with a topography at the bottom

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
+ ∇x,p · (uT, ωT ) − 1

C p p
(R T − δ L F) ω = ST in M × (0, t∗),

∂q

∂t
+ ∇x,p · (uq, ωq) − 1

p
δ F ω = Sq in M × (0, t∗),

∂u

∂t
+ ∇x,p · (uu, ωu) + ∂φ

∂x
= Su in M × (0, t∗),

∂φ

∂p
+ R

1

p
T = 0 in M × (0, t∗),

∇x,p · (u, ω) = 0 in M × (0, t∗).
(1.1)

Here ST , Sq and Su are the smooth source functions in x, p, and t . The domain
M = (0, L) × (pA, pB(x)) in R

2
x, p includes a topography at the bottom boundary

described by the function pB(x) (>pA); pB satisfies a technical assumption (see Fig. 1
and (3.3) below),

p′
B(x) = 0 near x = 0, L . (1.2)

In Fig. 1 and after, we reverse the axis in the p direction in order to reflect the physical
topography (which represents a mountain).

The system (1.1) is to be solved for the velocity vector field (u, ω), the geopotential
φ, the temperature T , and the humidity q. The other physical quantities in (1.1) are
described in, e.g., [1,2], and [3] as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = 287 (JK−1kg−1) is the gas constant for dry air,

C p = 1004 (JK−1kg−1) is the specific heat of dry air at constant pressure,

L = L(T ) = 2.5008 × 106 − 2.3 × 103 T (Jkg−1) is the latent heat of vaporization,

qs = qs(T, p) is the saturation specific humidity,

δ = δ(q, ω) = H(q − qs)H(−ω) where H is the heaviside function defined by

H(x) = 1/2(1 + sign(x)),

F = F(T, p) is a given smooth function of T and p.

(1.3)
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A higher order Finite Volume method for primitive equations 433

The inviscid primitive equations are known to be ill-posed with any set of local type
boundary conditions due to an earlier negative result in [4] or [5]. Since then, much
effort has been made in theoretical and computational fluid dynamics for a better
understanding of the inviscid primitive equations in a bounded domain; see, e.g.,
[6–13] where the authors proposed some possible (non-local) boundary conditions
for the inviscid primitive equations and performed related numerical simulations.
However most earlier works focused on the linearization of the inviscid primitive
equations around a stratified flow, and the corresponding numerical computations were
performed in a simple domain, such as a box or a channel. To date, the mathematical
understanding of this topic is very scarce and remains as an important open problem.
In [14] the authors considered the 2D actual primitive equations with a first order
scheme. Here we consider a second order scheme with a slightly simplified physical
model as explained below.

From a physical point of view, we expect that the temperature T of the atmosphere
depends mainly on the height (but not on the horizontal location) in the sense that

T (x, p, t) � T (p, t), (1.4)

where T̄ (p, t) is the average temperature at the isobar p at time t . Under this physical
simplifying assumption, Eq. (1.1)4 implies that

∂φ

∂p
� − R

p
T ,

and hence we see that

∂φ

∂x
� 0 (see, e.g., [14]or[16]).

Using this simplification, the inviscid primitive Eq. (1.1) are reduced to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
+ ∇x,p · (uT, ωT ) − 1

C p p
(R T − δ L F) ω = ST in M × (0, t∗),

∂q

∂t
+ ∇x,p · (uq, ωq) − 1

p
δ F ω = Sq in M × (0, t∗),

∂u

∂t
+ ∇x,p · (uu, ωu) = Su in M × (0, t∗),

∇x,p · (u, ω) = 0 in M × (0, t∗),
(1.5)

where the smooth initial data is given in the form,

u0 = u0(x, p) = (T0(p), q0(x, p), u0(x, p)) . (1.6)

The initial vertical velocity ω0 is deduced from u0 and the incompressibility condition
as explained below.
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434 A. Bousquet et al.

In the simplified system (1.5), the equations of the velocity are decoupled from
that of the temperature. Hence up to a certain time t∗, the system (1.5)–(1.6) is now
expected to be well-posed under the physical boundary conditions which are suggested
in, e.g., [14–16], or [17]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂T

∂n
= ∂q

∂n
= ∂u

∂n
= ∂ω

∂n
= 0 at x = 0, L ,

(u, ω) · n = 0 at p = pB,

ω = 0 at p = pA.

(1.7)

Here n denotes the outer unit normal along the boundary of M. Since the bottom
boundary is described by p = pB(x), we notice that the boundary condition (1.7)2
can be written in the form,

− u(x, pB(x)) p′
B(x) + ω(x, pB(x)) = 0, 0 ≤ x ≤ L . (1.8)

For convenience, we introduce the notation,

u = (T, q, u), S = (ST , Sq , Su), (1.9)

and set

F(T, q, ω) = (FT , Fq , 0) =
(

− 1

C p
(RT − δL F) ω, −δFω, 0

)

. (1.10)

Then the system (1.5) is written in a compact vector form,

⎧
⎨

⎩

∂u
∂t + ∇x,p · (uu, ωu) + 1

p
F = S in M × (0, T ),

∇x,p · (u, ω) = 0 in M × (0, T ).

(1.11)

Remark 1.1 It is physically relevant to assume that the horizontal velocity u is a small
perturbation of a constant speed u0 in the sense that

u(x, p, t) � u0 + ũ(x, p, t),

where the magnitude of ũ is much smaller than the absolute value of the constant
u0. Under the assumption above, u in the system (1.5) is identical to ũ up to some
lower order terms. However we do not implement this physical “simplification” in this
article because the behavior of ũ is more interesting than that of u especially when the
absolute value of u0 is large.

In computational fluid dynamics, Finite Volume methods (FV) are effective because
of the local conservation properties of the discrete fluxes; see, e.g., [18,19]. In particu-
lar, the Central-Upwind FV methods are widely used to handle the non-linear convec-
tive terms in the study of the primitive equations (or other similar equations derived
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A higher order Finite Volume method for primitive equations 435

from the conservation laws). It is so because the Central-Upwind schemes can account
for the propagation of the waves at different speeds and in different directions; see,
e.g., [20–26]. Concerning the domain with a non-flat boundary, one standard approach
is to discretize the domain into triangular cells. However it is well-known that using
the mesh with triangles is problematic to recover the normal velocity from the diver-
gence free condition and the given tangential velocity. As an alternative, the Cartesian
grid method is introduced in, e.g., [27–29]. The Cartesian grid consists mainly of rec-
tangles, but requires some non-rectangular cells near any non-flat boundary. Hence,
in this approach, the main computational errors occur near the non-flat boundary.
Some additional treatment, for instance, interpolations or mesh refinements are used
to overcome this issue; see also, e.g., [19]. As an other approach to treat the non-flat
(or curved) boundary, one can use the transformation which maps the (curved) spatial
domain to a rectangle. Yet the model equations needs to be rewritten with respect to the
new variables cell by cell (see, e.g., [18]). In this article, we modify the Godunov type
scheme to resolve the geometric difficulty of the system (1.5)–(1.7). Here, the discrete
FV derivatives are defined by using the so-called Taylor Series Expansion Scheme
(TSES) introduced in [30] and suitably modified in [31,32]. This scheme is valid for
any convex quadrilateral mesh satisfying the geometric condition (A1) below. The
discrete FV derivatives on the quadrilateral mesh play an important role to recover the
normal velocity from the divergence-free constraint and the given horizontal velocity;
see Eqs. (3.11)–(3.13) below.

This paper is organized as follows: In Sect. 2, we recall the FV space discretization
of a non-rectangular domain from [32]. Then we introduce a Runge–Kutta Finite
Volume method discretization of the inviscid Eqs. (1.5)–(1.7) in Sect. 3. We present
two ways to compute the numerical fluxes: The first is the Upwind Scheme (US) in
Sect. 3.1 and the second is the Central-Upwind Scheme (CUS) in Sect. 3.2. For the
time discretization, we use the classical fourth order Runge–Kutta method in Sect. 3.3.
In Sect. 4, we investigate the flexibility of our two Finite Volume schemes towards the
complex geometry. It is verified that the US and the CUS behave as a robust first and
second order scheme that work well with a complex geometry by considering different
shapes and sizes of the topography. It is important to observe that we do not need to
introduce any mesh refinement near the topography. We believe that the US scheme
and the CUS scheme introduced in this article can be made useful in many numerical
studies of models derived from conservation laws.

2 Finite Volume discretization

As shown in Fig. 1, the domain M = [0, L] × [pA, pB(x)] includes a topography
at the bottom of the boundary described by the graph of p = pB(x), 0 ≤ x ≤ L . In
order to use the (cell-centered) Finite Volume method (using Taylor series expansion
scheme) developed in [14,32], we first construct a partition of M in a set of trapezoids;
see Fig. 2.

On the interval [0, L] in the x direction, we choose the Nx +1 uniformly distributed
points xi+ 1

2
, 0 ≤ i ≤ Nx ,

x 1
2

= 0 < x 3
2

< · · · < xNx + 1
2

= L , (2.1)
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436 A. Bousquet et al.

Fig. 2 Example of the spatial discretization where the topography pB (x) is given by a properly scaled
normal distribution

where

xi+ 1
2

− xi− 1
2

= �x = L

Nx
, 1 ≤ i ≤ Nx . (2.2)

Then for each fixed x = xi+ 1
2
, 0 ≤ i ≤ Nx , we choose the Np + 1 uniformly

distributed points pi+ 1
2 , j+ 1

2
, 0 ≤ j ≤ Np along the interval [pA, pB(xi+ 1

2
)] in the p

direction,

pA = pi+ 1
2 , 1

2
< pi+ 1

2 , 3
2

< · · · < pi+ 1
2 , Np+ 1

2
= pB(xi+ 1

2
), 0 ≤ i ≤ Nx , (2.3)

where

pi+ 1
2 , j+ 1

2
− pi+ 1

2 , j− 1
2

= �pi+ 1
2

=
pB(xi+ 1

2
) − pA

Np
, 1 ≤ j ≤ Np. (2.4)

Using (2.1) and (2.3), we obtain the (Nx + 1) × (Np + 1) nodal points in M,

xi+ 1
2 , j+ 1

2
=

(
xi+ 1

2
, pi+ 1

2 , j+ 1
2

)
, 0 ≤ i ≤ Nx , 0 ≤ j ≤ Np. (2.5)
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A higher order Finite Volume method for primitive equations 437

Fig. 3 A trapezoidal control
volume Ki, j with vertices
xi±1/2, j±1/2 and the cell center
xi, j , and some neighbor
trapezoids

Fig. 4 Boundary �i, j and unit
outer normal ni, j of a control
volume Ki, j

Now using the nodal points, we partition the domain M into Nx × Np trapezoids
Ki, j , 1 ≤ i ≤ Nx , 1 ≤ j ≤ Np where

Ki, j := trapezoidconnecting xi− 1
2 , j− 1

2
, xi+ 1

2 , j− 1
2
, xi+ 1

2 , j+ 1
2
, and xi− 1

2 , j+ 1
2
;
(2.6)

see Fig. 3.
The Finite Volume mesh defined by (2.6) is topologically equivalent to a rectangular

mesh. Hence we write the boundary �i, j of Ki, j as (see Fig. 4)

�i, j = �N
i, j ∪ �S

i, j ∪ �E
i, j ∪ �W

i, j , 1 ≤ i ≤ Nx , 1 ≤ j ≤ Np. (2.7)

Then the outer unit normal vector ni, j of the control volume Ki, j can be written in the
form,

ni, j
∣
∣
�k

i, j
= nk

i, j = (nk,x
i, j , nk,p

i, j ), k = N , S, E, W. (2.8)
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438 A. Bousquet et al.

To enforce the appropriate boundary conditions, we introduce the flat control vol-
umes along the boundary of M:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K0, j = segment joining x 1
2 , j− 1

2
and x 1

2 , j+ 1
2
, 1 ≤ j ≤ Np.

KNx +1, j = segment joining xNx + 1
2 , j− 1

2
and xNx + 1

2 , j+ 1
2
, 1 ≤ j ≤ Np.

Ki,0 = segment joining xi− 1
2 , 1

2
and xi+ 1

2 , 1
2
, 1 ≤ i ≤ Nx ,

Ki,Np+1 = segment joining xi− 1
2 ,Np+ 1

2
and xi+ 1

2 ,Np+ 1
2
, 1 ≤ i ≤ Nx .

(2.9)

To use the convergence and consistency results for FV, which are proven in [31,32],
we assume that our mesh is sufficiently regular to satisfy

(A1) The projection of xi, j onto the line containing �k
i, j belongs to �k

i, j , k = E,

W, N, S. As a consequence of (A1), we also have

(A2) Any nodal point xi+ 1
2 , j+ 1

2
in M, 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Np − 1, is

located inside the quadrilateral with vertices xi, j , xi, j+1, xi+1, j+1, and xi+1, j .

Thanks to classical geometric properties of trapezoids, the barycenter of each control
volume Ki, j can be written as an interpolation point of the four nearby vertices:

For 1 ≤ i ≤ Nx , and 1 ≤ j ≤ Np, there exist 0 < γ k
i, j < 1,

∑4
k=1 γ k

i, j = 1, such
that

xi, j = (xi, j , pi, j )

= γ 1
i, j xi− 1

2 , j− 1
2

+ γ 2
i, j xi+ 1

2 , j− 1
2

+ γ 3
i, j xi+ 1

2 , j+ 1
2

+ γ 4
i, j xi− 1

2 , j+ 1
2
.

(2.10)

In the numerical simulations below, the explicit values of γ k
i, j , 1 ≤ k ≤ 4, are used,

while here we omit the explicit expressions for the sake of simplicity.
The centers of the flat control volumes in (2.9) are denoted as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi,0 = 1

2

(

x
i− 1

2 , 1
2

+ x
i+ 1

2 , 1
2

)

, xi,Np+1 = 1

2

(

x
i− 1

2 ,Np+ 1
2

+ x
i+ 1

2 ,Np+ 1
2

)

, 1 ≤ i ≤ Nx ,

x0, j = 1

2

(

x 1
2 , j− 1

2
+ x 1

2 , j+ 1
2

)

, xNx +1, j, j = 1

2

(

x
Nx + 1

2 , j− 1
2

+ x
Nx + 1

2 , j+ 1
2

)

, 1 ≤ j ≤ Np .

(2.11)

Now we introduce the FV space on the closure of M:

Vh :=
{

space of step functions uh on M suchthat
uh |Ki, j = ui, j , 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Np + 1

}

. (2.12)
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A higher order Finite Volume method for primitive equations 439

For any uh ∈ Vh , we write

uh =
Nx +1∑

i=0

Np+1∑

j=0

ui, jχKi, j , (2.13)

where χKi, j is the characteristic function of Ki, j .
To define the FV discretized derivatives, we construct another partition of the

domain M consisting of the quadrilaterals Ki, j+ 1
2

and Ki+ 1
2 , j where

Ki, j+ 1
2

:= quadrilateralconnecting xi− 1
2 , j+ 1

2
, xi, j , xi+ 1

2 , j+ 1
2
, and xi, j+1,

(2.14)

for 1 ≤ i ≤ Nx , 0 ≤ j ≤ Np, and

Ki+ 1
2 , j := quadrilateralconnecting xi, j , xi+ 1

2 , j− 1
2
, xi+1, j , and xi+ 1

2 , j+ 1
2
,

(2.15)

for 0 ≤ i ≤ Nx , 1 ≤ j ≤ Np.
Thanks to (A2), we write the inner nodal points xi+ 1

2 , j+ 1
2
, 1 ≤ i ≤ Nx − 1, 1 ≤

j ≤ Np − 1, as a (non-unique) interpolation of the four nearby cell centers:

xi+ 1
2 , j+ 1

2
= μ1

i+ 1
2 , j+ 1

2
xi, j + μ2

i+ 1
2 , j+ 1

2
xi+1, j + μ3

i+ 1
2 , j+ 1

2
xi, j+1

+μ4
i+ 1

2 , j+ 1
2
xi+1, j+1, (2.16)

for some positive numbers μk
i+ 1

2 , j+ 1
2

such that

4∑

k=1

μk
i+ 1

2 , j+ 1
2

= 1. (2.17)

In our numerical computations, we first fix μ1
i+ 1

2 , j+ 1
2

as a constant, e.g., 1/4, then we

solve (2.16) and (2.17) to find μk
i+ 1

2 , j+ 1
2
, k = 2, 3, 4. Using the geometric expression

(2.16), we define the approximate values of uh ∈ Vh at the inner nodal points:

ui+ 1
2 , j+ 1

2
= μ1

i+ 1
2 , j+ 1

2
ui, j + μ2

i+ 1
2 , j+ 1

2
ui+1, j + μ3

i+ 1
2 , j+ 1

2
ui, j+1

+μ4
i+ 1

2 , j+ 1
2
ui+1, j+1, (2.18)

for 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Np − 1.
Along the boundary, we set,

⎧
⎪⎪⎨

⎪⎪⎩

u
i+ 1

2 , 1
2

= 1

2
(ui,0 + ui+1,0), u

i+ 1
2 ,Np + 1

2
= 1

2
(ui,Np+1 + ui+1,Np+1), 1 ≤ i ≤ Nx − 1,

u 1
2 , j+ 1

2
= 1

2
(u0, j + u0, j+1), u

Nx + 1
2 , j+ 1

2
= 1

2
(uNx +1, j + uNx +1, j+1), 1 ≤ j ≤ Np − 1.

(2.19)
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At the four corners, we also set,

u 1
2 , 1

2
= u0,0, u 1

2 ,Np+ 1
2

= u0,Np+1, uNx + 1
2 , 1

2
= uNx +1,0,

uNx + 1
2 ,Np+ 1

2
= uNx +1,Np+1. (2.20)

Using the nodal values in (2.18)–(2.20), the FV derivatives on Vh , which are constant
on each Ki+ 1

2 , j or Ki, j+ 1
2
, are defined by

∇huh =
Nx −1∑

i=1

Np∑

j=1

∇huh

∣
∣
∣
∣
∣
∣
K

i, j+ 1
2
χK

i+ 1
2 , j

+
Nx∑

i=1

Np−1∑

j=1

∇huh

∣
∣
∣
∣
∣
∣
K

i, j+ 1
2

χK
i, j+ 1

2
, (2.21)

where

∇huh |K
i+ 1

2 , j
:= M−1

i+ 1
2 , j

(
ui+1, j − ui, j

ui+ 1
2 , j+ 1

2
− ui+ 1

2 , j− 1
2

)

, (2.22)

∇huh |K
i, j+ 1

2

:= M−1
i, j+ 1

2

(
ui+ 1

2 , j+ 1
2

− ui− 1
2 , j+ 1

2

ui, j+1 − ui, j

)

. (2.23)

Here M−1
i+ 1

2 , j
and M−1

i, j+ 1
2

are the inverses of the geometric matrices,

Mi+ 1
2 , j :=

(
xi+1, j − xi, j pi+1, j − pi, j

0 pi+ 1
2 , j+ 1

2
− pi+ 1

2 , j− 1
2

)

, (2.24)

Mi, j+ 1
2

:=
(

xi+ 1
2

− xi− 1
2

pi+ 1
2 , j+ 1

2
− pi− 1

2 , j+ 1
2

xi, j+1 − xi, j pi, j+1 − pi, j

)

. (2.25)

The discrete L2 (or H1) inner product on Vh is easily inferred from (2.13) (or
(2.21)):

(uh, vh)L2 :=
Nx∑

i=1

Np∑

j=1

ui, jvi, j |Ki, j |,

(uh, vh)H1 := (uh, vh)L2 +
Nx −1∑

i=1

Np∑

j=1

(
∇huh

∣
∣
K

i+ 1
2 , j

· ∇hvh
∣
∣
K

i+ 1
2 , j

)
|Ki+ 1

2 , j |

+
Nx∑

i=1

Np−1∑

j=1

(
∇huh

∣
∣
K

i, j+ 1
2

· ∇hvh
∣
∣
K

i, j+ 1
2

)
|Ki, j+ 1

2
|.
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A higher order Finite Volume method for primitive equations 441

Fig. 5 Quadrilaterals
K

i, j+ 1
2

and K
i+ 1

2 , j

Fig. 6 A quadrilateral Ci, j in
thick solid lines with two nearby
K

i± 1
2 , j

in dash-lines

We will use the minmod function that minimize the gradient over 3 quadrilaterals
to implement a second order Finite Volume method in Sect. 3.2; see (3.25) below.
Toward this end, we introduce the quadrilaterals Ci, j , 1 ≤ i ≤ Nx , 1 ≤ j ≤ Np, in
the form,

Ci, j := quadrilateralconnecting xi−1, j , xi, j−1, xi+1, j , and xi, j+1; (2.26)

see Figs. 5 and 6. In each Ci, j , we introduce a discrete derivative of uh ∈ Vh as

∇huh |Ci, j
:= M−1

i, j ·
(

vi+1, j − vi−1, j

vi, j+1 − vi, j−1

)

, (2.27)

where M−1
i, j is the inverse of the geometric matrix,

Mi, j :=
(

xi+1, j − xi−1, j pi+1, j − pi−1, j

xi, j+1 − xi, j−1 pi, j+1 − pi, j−1

)

. (2.28)
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442 A. Bousquet et al.

The discrete derivative (2.27) will be used in Sect. 3.2 only where we construct the
Central-Upwind method.

3 Numerical scheme: the Runge–Kutta Finite Volume method

In this section, using the FV discretization from Sect. 2, we discretize the inviscid
primitive Eqs. (1.5) (or (1.11)), supplemented with the initial and boundary condi-
tions (1.6) and (1.7). We first introduce the following subspaces of Vh that reflect the
boundary conditions in (1.7):

Thanks to (A2) and the homogeneous Neumann boundary conditions on the lateral
boundary of M, we introduce the subspace Vh of Vh defined by

Vh =
{

uh ∈ Vh

∣
∣
∣u0, j = u1, j , uNx +1, j = uNx , j , 0 ≤ j ≤ Np + 1

}
. (3.1)

The space Vh serves as the FV space for u = (T, q, u) in the context of the Neumann
boundary conditions (1.7).

Restricting (1.8) to the FV space Vh , we write

ωi,Np+1 = ui,Np+1 p′
B(xi ), 0 ≤ i ≤ Nx + 1. (3.2)

Thanks to (1.2), assuming that p′
B vanishes at xi , i = 1, Nx , we notice from (3.2) that

ωi,Np+1 = 0, i = 0, 1, Nx or Nx + 1. (3.3)

Using (3.2) and (3.3), we project the boundary condition (1.7) of ω onto the FV space
and define a subspace Wh of Vh as

Wh =
{

ωh ∈ Vh

∣
∣
∣

ω0, j = ω1, j , ωNx +1, j = ωNx , j , 0 ≤ j ≤ Np + 1,

ωi,0 = 0, ωi,Np+1 = ui,Np+1 p′
B(xi ), 0 ≤ i ≤ Nx + 1

}

.

(3.4)

To project Eq. (1.11)1 of u = (T, q, u) onto the FV space V3
h , we integrate (1.11)1

over a control volume Ki, j and write

dui, j

dt
+ 1

|Ki, j |
∫

Ki, j

∇x,p · (uu, ωu) + 1

pi, j
Fi, j = Si, j , 1 ≤ i ≤ Nx , 1 ≤ j ≤ Np,

(3.5)
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where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui, j = (Ti, j , qi, j , ui, j ) = 1

|Ki, j |
∫

Ki, j

u,

Fi, j = F(Ti, j , qi, j , ωi, j ),

Si, j = 1

|Ki, j |
∫

Ki, j

S.

(3.6)

Here |Ki, j | is the measure of Ki. j . The value ωi, j of ωh ∈ Wh will be computed
independently by using the discrete divergence-free constraint; see (3.13).

Thanks to the divergence theorem, using the outer unit normal defined in (2.8), we
write the second term on the left-hand side of (3.5) in the form,

1

|Ki, j |
∫

Ki, j

∇x,p · (uu, ωu) = 1

|Ki, j |
(

HN
i, j + HS

i, j + HE
i, j + HW

i, j

)
, (3.7)

where

HN
i, j = 1

|Ki, j |
∫

�N
i, j

nN
i, j ·

(
u
ω

)

u, HS
i, j = 1

|Ki, j |
∫

�S
i, j

nS
i, j ·

(
u
ω

)

u,

HE
i, j = 1

|Ki, j |
∫

�E
i, j

nE
i, j ·

(
u
ω

)

u, HW
i, j = 1

|Ki, j |
∫

�W
i, j

nW
i, j ·

(
u
ω

)

u.

(3.8)

Combining (3.5) and (3.7), we obtain the FV discretization of the system (1.5)–(1.7)
which reads:

To find uh = (Th, qh, uh) in (Vh)3 such that

dui, j

dt
= Rh(uh, ωh, t), 1 ≤ i ≤ Nx , 1 ≤ j ≤ Np, (3.9)

where

Rh(uh, ωh, t) = − 1

|Ki, j |
(

HN
i, j + HS

i, j + HE
i, j + HW

i, j

)
− Fi, j + Si, j . (3.10)

For the time discretization, we introduce, in Sect. 3.3, the fourth order Runge–Kutta
scheme where the right-hand side Rh of (3.9) is considered as a source term at each
time step. More precisely, the flux (3.8) and −Fi, j at the time step n will be computed
using the given functions uh ∈ V3

h and ωh ∈ Wh from the previous time step n − 1.
In Sects. 3.1 and 3.2, US scheme and CUS scheme are respectively introduced to
complete the computation of the fluxes (3.8).
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We find the vertical velocity ωh from the given horizontal velocity uh to complete
the numerical computation of (uh, ωh) ∈ V3

h × Wh at each time step. More precisely,

we restrict the incompressibility condition (1.5)4 to ∪Nx
i=1∪Np

j=0 Ki, j+1/2 only, and write

∇hωh · (0, 1)
∣
∣
K

i, j+ 1
2

= −∇huh · (1, 0)
∣
∣
K

i, j+ 1
2

, 1 ≤ i ≤ Nx , 0 ≤ j ≤ Np. (3.11)

Thanks to the construction of our Finite Volume mesh in Sect. 2, we notice that the
vector xi, j − xi, j+1 for each i, j is almost parallel to the p-direction. Hence, using the
Finite Volume derivative defined in (2.23), we write (3.11) in the form,

ωi, j+1 − ωi, j = −(pi, j+1 − pi, j )

(

∇huh · (1, 0)
∣
∣
K

i, j+ 1
2

)

,

1 ≤ i ≤ Nx , 1 ≤ j ≤ Np, (3.12)

with ωi,0 = 0 because ωh ∈ Wh . We rewrite (3.12) in a matrix form

Ahωh = Fh(uh), (3.13)

where Fh(uh) is the right-hand side and Ahωh is the left-hand side of (3.12). Since
we have ωi,0 = 0, for 1 ≤ i ≤ Nx , Eq. (3.13) has a unique solution ω ∈ Wh for a
given uh ∈ Vh .

Remark 3.1 The values of uh ∈ (Vh)3 at the top and bottom boundaries remain unde-
termined. We only need these free values of uh for the computation of the fluxes
at the top and the bottom boundaries. Yet these free values of uh are multiplied by
(uh, ωh) · n, see Eq. (3.8).

Since (uh, ωh) · n = 0 at the top and the bottom boundaries (see (3.4)), we can
simply take the free values uh equal to zero in the computation.

3.1 Upwind Scheme (US)

In this section, we present the US scheme, which is used to approximate the fluxes in
(3.8). The following US construction, in this section, resembles those of earlier works
in [14].

It is necessary to introduce some interpolated values of uh ∈ Vh and ωh ∈ Wh at
the center of each edge in order to compute the fluxes via US. Using the fact that the
barycenters are well-aligned in the p-direction, the interpolation value on the north
and south edges of uh (or ωh) are simply defined by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui, 1
2

= ui,0 ωi, 1
2

= ωi,0 1 ≤ i ≤ Nx ,

ui, j+ 1
2

= ui, j + ui, j+1

2
, ωi, j+ 1

2
= ωi, j + ωi, j+1

2
1 ≤ i ≤ Nx , 1 ≤ j ≤ Np,

ui,Np+ 1
2

= ui,Np+1 ωi,Np+ 1
2

= ωi,Np+1 1 ≤ i ≤ Nx .

(3.14)
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Fig. 7 The central value
u

i+ 1
2 , j

along a vertical edge as

a interpolation of two
projections of ui, j and ui+1, j
along the edge

Then applying the US scheme to (3.14), the north and south fluxes in (3.8) are as
follows:

HN
i, j � |�N

i, j |
|Ki, j |nN

i, j ·
(

ui, j+ 1
2

ωi, j+ 1
2

)

ǔi, j+ 1
2
, (3.15)

HS
i, j � |�S

i, j |
|Ki, j |nS

i, j ·
(

ui, j− 1
2

ωi, j− 1
2

)

ǔi, j− 1
2
, (3.16)

where |�N
i, j | and |�S

i, j | are the lengths of the segments �N
i, j and �S

i, j . Then for 1 ≤ i ≤
Nx and 1 ≤ j ≤ Np, we define

ǔi, j+ 1
2

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui, j if nN
i, j ·

(
ui, j+ 1

2

ωi, j+ 1
2

)

≥ 0,

ui, j+1 if nN
i, j ·

(
ui, j+ 1

2

ωi, j+ 1
2

)

< 0.

(3.17)

Note that, in (3.15) (or (3.16)), it is not necessary to choose ǔi,Np+ 1
2

(or ǔi, 1
2
) because

(ui,Np+1, ωi,Np+1)·nN
i,Np

= 0 (or (ui,0, ωi,0)·nS
i,1 = 0). This is due to the construction

of the FV spaces Vh and Wh defined in (3.1) and (3.4); see Remark 3.1.
To compute the east and west fluxes in (3.8), we introduce an interpolation value

on the east (or west) edge of uh in the form,

ui+ 1
2 , j = rui, j+1 + (1 − r)ui, j , 0 ≤ i ≤ Nx , 1 ≤ j ≤ Np. (3.18)

Here r = (pi+ 1
2 , j − pi, j )/(pi+1, j − pi, j ) is a geometric value, which is determined

by the projection of the barycenter onto the east (or west) edge; see Fig. 7.
Note that we do not need to introduce any interpolation of ω on the east and

west edges because the outer normal vectors on those edges are orthogonal to the
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p-direction. We compute the east and west fluxes in (3.8) by applying the US scheme
to (3.18) and setting

HE
i, j � |�E

i, j |
|Ki, j |ui+ 1

2 , j ǔi+ 1
2 , j , (3.19)

HW
i, j � − |�W

i, j |
|Ki, j |ui+ 1

2 , j ǔi− 1
2 , j , (3.20)

where |�E
i, j | and |�W

i, j | are the lengths of the segments �E
i, j , �W

i, j , and for 0 ≤ i ≤
Nx and 1 ≤ j ≤ Np,

ǔi+ 1
2 , j =

{
ui, j if ui+ 1

2 , j ≥ 0,

ui, j+1 if ui+ 1
2 , j < 0.

(3.21)

Then we obtain the US scheme for Eq. (3.8) from Eqs. (3.15), (3.16), (3.19) and (3.20).

3.2 Central-Upwind Scheme (CUS)

In this section, modifying the 2nd order central-upwind method as in e.g., [20–26],
we construct a higher order CUS to compute the flux appearing in (3.8). As it will
be experimentally verified by the numerical computations below in Sect. 4, this CUS
scheme gives a better convergence rate, of order about 1.5 with respect to the mesh
size, than that of order 1 for the US scheme introduced in the previous section.

The fluxes in (3.8) can be estimated by the CUS scheme in the form,

Hk
i, j � |�k

i, j |
|Ki, j |

(
hk

i, j · nk
i, j

)
, hk

i, j = (hk,x
i, j , hk,p

i, j ), (3.22)

for k = N , E, W, S, 1 ≤ i ≤ Nx and 1 ≤ j ≤ Np, where hk
i, j will be determined

below. Along each east or west edges, since the unit outer normal is parallel to the
x-direction, we do not need to introduce hk,p, k = E, W in (3.22). Moreover, since
the south (or west) flux of one control volume can be understood as the negative
north (or east) flux of a nearby control volume, we have HS

i, j = −HN
i, j−1 and HW

i, j =
−HE

i−1, j for each i, j . Therefore, to complete the formula (3.22), it is enough to define

hN ,x
i, j , hN ,p

i, j , and hE,x
i, j for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Np below:

We introduce uN+
i, j = (T N+

i, j , q N+
i, j , uN+

i, j ) (or uN−
i, j = (T N−

i, j , q N−
i, j , uN−

i, j )) as an

approximation of uh near �N
i, j of Ki, j from above (or below) of �N

i, j . Similarly,

uE+
i, j = (T E+

i, j , q E+
i, j , uE+

i, j ) (or uE−
i, j = (T E−

i, j , q E−
i, j , uE−

i, j )) denotes an approxima-

tion of uh near �E
i, j of Ki, j from the right (or left) of �N

i, j . These approximations

uk±
i, j , k = N , E, 1 ≤ i ≤ Nx and 1 ≤ j ≤ Np, are defined by a non-oscillatory linear
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polynomial reconstruction

uN−
i, j := ζ N

i, j (xi, j+ 1
2
, pi, j+ 1

2
, t), uN+

i, j := ζ N
i, j+1(xi, j+ 1

2
, pi, j+ 1

2
, t),

uE−
i, j := ζ E

i, j (xi+ 1
2 , j , pi+ 1

2 , j , t), uE+
i, j := ζ E

i+1, j (xi+ 1
2 , j , pi+ 1

2 , j , t),
(3.23)

where
{

ζ N
i, j (x̄, p̄, t) := ui, j (t) + sN

i, j (x̄, p̄, t),

ζ E
i, j (x̄, p̄, t) := ui, j (t) + sE

i, j (x̄, p̄, t).
(3.24)

Here using the Finite Volume derivatives in (2.21) and (2.27), the slopes sN
i, j and sE

i, j
are defined by

sN
i, j (x̄, p̄, t)

= minmod

(

θ1 ⊗ ui, j − ui, j−1

� p̃i
,

ui, j+1 − ui, j−1

2� p̃i
, θ1 ⊗ ui, j+1 − ui, j

� p̃i

)

(pi, j −p),

sE
i, j (x̄, p̄, t)

= minmod

(

θ1 ⊗ ( ∇uh |K
i− 1

2 , j
· x

)
, ∇uh |Ci, j

· x, θ1 ⊗
(

∇uh |K
i+ 1

2 , j
· x

))

,

(3.25)

for � p̃i = (�pi+1/2+�pi−1/2)/2, x = (xi, j − x̄, pi, j − p̄), and θ i = (θ1
i , θ2

i , θ3
i ), i = 1, 2.

In (3.25), the operator ⊗ acts on two vectors and produce a vector whose n-th component is the
product of n-th components of the input vectors. The minmod limiter in (3.25) is defined by

minmod (x1, x2, ..) :=
⎧
⎨

⎩

min(xi ), if xi > 0 ∀i,
max(xi ), if xi < 0 ∀i,
0, otherwise.

Moreover, we choose the parameters θ
j

i ∈ [1, 2], i = 1, 2, j = 1, 2, 3 in an empirical way.
Let us denote

vh = (uh, ωh), (3.26)

then vk±
i, j = (uk±

i, j , ωk±
i, j ), k = N , E, 1 ≤ i ≤ Nx and 1 ≤ j ≤ Np , are defined in the same

manner as uh .
We set

aN+
i, j = max

[
uN+

i, j , uN−
i, j , 0

]
, aN−

i, j = min
[
uN+

i, j , uN−
i, j , 0

]
,

aE+
i, j = max

[
uE+

i, j , uE−
i, j , 0

]
, aE−

i, j = min
[
uE+

i, j , uE−
i, j , 0

]
,

bN+
i, j = max

[
ωN+

i, j , ωN−
i, j , 0

]
, bN−

i, j = min
[
ωN+

i, j , ωN−
i, j , 0

]
. (3.27)
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Then we finally define

hN ,x
i, j =

aN+
i, j F(uN−

i, j ) − aN−
i, j F(uN+

i, j )

aN+
i, j − aN−

i, j

+
aN+

i, j aN−
i, j (uN+

i, j − uN−
i, j )

aN+
i, j − aN−

i, j

, (3.28)

hN ,p
i, j =

bN+
i, j G(vN−

i, j ) − bN−
i, j G(vN+

i, j )

bN+
i, j − bN−

i, j

+
bN+

i, j bN−
i, j (vN+

i, j − vN−
i, j )

bN+
i, j − bN−

i, j

, (3.29)

hE,x
i, j =

aE+
i, j F(uE−

i, j ) − aE−
i, j F(uE+

i, j )

aE+
i, j − aE−

i, j

+
aE+

i, j aE−
i, j (uE+

i, j − uE−
i, j )

aE+
i, j − aE−

i, j

, (3.30)

where F(u) = (uT, uq, u2) and G(v) = (ωT, ωq, ωu). This construction of hN ,p
i, j , hN ,p

i, j ,

and hE,x
i, j completes the computation of the fluxes in (3.22).

3.3 Fourth order Runge–Kutta time discretization

For the time discretization, we introduce, in this section, the classical fourth order Runge–Kutta
method.

For a fixed time t∗ > 0, we set �t = t∗/Nt as the uniform time increment where Nt denotes
the total number of iterations.

The initial value (u0
h , ω0

h) where u0
h = (T 0

h , q0
h , u0

h) is defined as the projection of the initial

data (u0, ω0) in (1.6) onto the space (Vh)3 × Wh . Then, thanks to (3.9) and (3.13), we obtain
the time discrete solution (un

h , ωn
h), un

h = (T n
h , qn

h , un
h) at time step 1 ≤ n ≤ Nt by recursively

applying the process below:

Step 1

k1,n = Rh(un
h , ωn

h , tn),

u1,n
h = un

h + �t k1,n,

Ahω
1,n
h = Fh(u1,n

h ), (3.31)

Step 2

k2,n = Rh(u1,n
h , ω

1,n
h , tn + �t

2
),

u2,n
h = un

h + �t

2
k2,n,

Ahω
2,n
h = Fh(u2,n

h ), (3.32)

Step 3

k3,n = Rh(u2,n
h , ω

2,n
h , tn + �t

2
),

u3,n
h = un

h + �t

2
k3,n,

Ahω
3,n
h = Fh(u3,n

h ), (3.33)
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Step 4

kn
4 = Rh(u3,n

h , ω
3,n
h , tn + �t),

un+1
h = un

h + �t

6

(
k1,n + 2k2,n + 2k3,n + kn

4

)
,

Ahωn+1
h = Fh(un+1

h ). (3.34)

4 Numerical simulations

We report, in this section, the results of some numerical tests for the inviscid primitive Eqs.
(1.5)–(1.7) performed by using the Runge–Kutta Finite Volume method constructed in Sect.
3. The domain M includes a topography (regarded as a mountain) which is described by a
smooth function pB(x); see Fig. 1. For the physical relevance of our simulations, the length
of the domain in the x-direction L and the minimum pressure pA are chosen respectively as
L = 50,000 and pA = 200, and we set the final time t∗ = 500 and the time step �t = 10.
Then, the exact solution of (1.5) is chosen as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

TE X (p, t) = (
300 − 50

(
1 − p

1000

))
cos (2π t) ,

qE X (x, p, t) =
(

p−pB (x))
1200.0

)2
cos

(
4πp

pB (x)

)
cos(4π t) + 0.4,

uE X (x, p, t) = − ∂ξ
∂p ,

wE X (x, p, t) = ∂ξ
∂x ,

(4.1)

where

ξ(x, p, t) =
(

(p − pA)(pB(x) − p)2

50 × 10002

)3

cos(2π t). (4.2)

Now, our main task is to perform the numerical simulations of the inviscid primitive equa-
tions by applying the US and the CUS discretizations. By changing the size and shape of the
topography, we aim to verify that the US and the CUS are convergent FV schemes of order
1 and order around 1.5 respectively with respect to the spatial mesh. Towards this end, we
first test the US scheme and the CUS scheme with a relatively small topography in Sect. 4.1.
Concerning the US scheme for this case, we see that the convergence rate of q or u is of order
one as desired. By our treatment of the incompressibility condition, which reflects the geometry
very well (see (3.11)), the convergence rate of the vertical velocity ω is of order 2. We believe
that the method (3.11)–(3.13), introduced in this article, can be made useful in many numerical
computations of incompressible fluids in particular when the domain has a non-flat boundary.
Due to the choice of T as a physical data independent of x (see (1.4) and (4.1)1), the convergence
rate of T is as low as of order 0.1. However the relative L2 error of T is still small as it stays
between 10−4 and 10−5. Once we perform the simulation using CUS scheme on the relatively
flat topography, we notice that the convergence rates of the CUS are about 1.3 ∼ 1.6 times
better than those of the US. Hence we believe that the CUS can be considered as a second order
scheme in general; see Remark 4.1 below. To test the flexibility of our FV schemes towards
the geometry, we consider the cases of a high topography in Sect. 4.2 and a narrow mountain
in Sect. 4.3. For these cases, we notice that the US (or the CUS) scheme produces almost the
same convergence results as that of the relatively flat topography. Therefore, we finally claim
that our US (or CUS) scheme is a robust first (or second) order scheme which works well with
a relatively complex geometry.
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Fig. 9 Relative L2 error for T with pB (x) of (4.3) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 0.1120 and 0.2753 respectively
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Fig. 10 Relative L2 error for q with pB (x) of (4.3) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 1.0285 and 1.2906 respectively

Remark 4.1 If we drop the term F in (1.11), the CUS scheme converges with a rate of 2. However
in the simulations of the physical model (1.5), since the term F consists of large quantities, the
rate of convergence is <2.
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Fig. 11 Relative L2 error for u with pB (x) of (4.3) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 1.0018 and 1.5688 respectively
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Fig. 12 Relative L2 error for ω with pB (x) of (4.3) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 1.9464 and 1.9950 respectively
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Fig. 14 Relative L2 error for T with pB (x) of (4.4) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 0.1015 and 0.2728 respectively
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Fig. 15 Relative L2 error for q with pB (x) of (4.4) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 1.0293 and 1.3030 respectively
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Fig. 16 Relative L2 error for u with pB (x) of (4.4) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 1.067 and 2.1299 respectively
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Fig. 17 Relative L2 error for ω with pB (x) of (4.4) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 1.9461 and 1.9917 respectively
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Fig. 19 Relative L2 error for T with pB (x) of (4.5) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 0.3629 and 0.6100 respectively
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Fig. 20 Relative L2 error for q with pB (x) of (4.5) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 1.1112 and 1.6025 respectively
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Fig. 21 Relative L2 error for u with pB (x) of (4.5) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 1.0151 and 1.7980 respectively

4.1 Simulation 1: the case of a relatively flat topography

We set

pB(x) = 1000 − 150 exp

(

−
(

x − 25000

6000

)2
)

. (4.3)

Figure 8 shows the domain and the initial values of T, q, u, and ω. Figures 9, 10, 11, and 12
show the relative L2 errors for T, q, u, and ω in log–log scale.

For q and u, the US scheme converges with a rate of 1, and the CUS scheme converges with
a rate of 1.3 and 1.57 respectively. The convergence rate of ω is of order 2 using either the US
or the CUS scheme because we apply identical methods for ω. Since we impose a physical
restriction on T , see (1.4) and (4.1)1, the convergence rate for T is as low as of order 0.1 for the
US (or of order 0.3 for the CUS). However the relative L2 error for T is less than 10−4, which
demonstrate a satisfactory accuracy of T .

4.2 Simulation 2: the case of a higher topography

We set

pB(x) = 1000 − 300 exp

(

−
(

x − 25000

6000

)2
)

. (4.4)

In this case the mountain determined by (4.4) is higher than (but as wide as) the one in Sect.
4.1. Figure 13 shows the domain and the initial values of T, q, u, and ω. Figures 14, 15, 16,
and 17 show the relative L2 errors for T, q, u, and ω, respectively, in log–log scale. We notice
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Fig. 22 Relative L2 error for ω with pB (x) of (4.5) at t∗ = 500 and �t = 10 in log–log scale. The
convergence rates of the US and CUS methods are 1.9390 and 1.9872 respectively

that the convergence rates for this case are compatible with those in Sect. 4.1. Therefore we see
that our US (or CUS) scheme is flexible towards the height of the domain.

4.3 Simulation 3: the case of a narrow topography

In this simulation, we make the obstacle narrow by taking,

pB(x) = 1000 − 200 exp

(

−
(

x − 25000

3000

)2
)

. (4.5)

Figure 18 shows the domain and the initial values of T, q, u, and ω. Figures 19, 20, 21, and
22 show the relative L2 errors for T, q, u, and ω, respectively, in log–log scale. We notice that
the convergence rates for this case are compatible with those in Sect. 4.1.
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